
C H A R A C T E R I S T I C  C O N S T A N T S  O F  T U R B U L E N C E  

I .  I .  N o v i k o v  UDC 532.517.4 

The mixing lengths of turbulent  ve loc i ty  and t e m p e r a t u r e  pulsat ions a re  calculated theo-  
r e t i ca l ly  for  a s teady  flow around an infinitely la rge  plate,  a lso the thickness  of the 
v iscous  sublayer .  The values of these p a r a m e t e r s  based on analyt ical  fo rmulas  are  found 
to be in c lose  ag reemen t  with e m p i r i c a l  values .  

The main  c h a r a c t e r i s t i c s  of turbulent  flow, including the values  of i ts  constants  in both the ve loc i ty  
and the t e m p e r a t u r e  d is t r ibut ion equations (namely fiw and f i t  in the equations for  the mixing lengths of 
turbulent  ve loc i ty  and t e m p e r a t u r e  pulsat ions,  and the p a r a m e t e r  a = W*Ss/v  descr ib ing  the thickness  6 s 
of the v i scous  sublayer) ,  a re  re la ted  to the diffusion m e c h a n i s m  of propagat ing turbulent  pulsations and, 
the re fore ,  should be defined on the bas is  of this mechan i sm.  Usual ly  flw, a, and f i t  are  considered to 
be empi r i ca l  constants .  In this a r t ic le  we will t ry  to calculate  them theore t ica l ly .  

Turbulent  pulsat ions may  be t r ea ted  as flow per turba t ions  t ravel ing  along a turbulent  s t r e a m  of fluid. 
Flow per tu rba t ions  occur in any s t r e a m ;  the magnitude of a pe r tu rba t ion  is cha rac t e r i zed  by the resul t ing  
change in the ve loc i ty  at a given point in the fluid. In the well-known p rob lem concerning the diffusion of 
a s ingle s t ra igh t  vor t ex  through a l amina r  s t r e a m ,  the quantity which c h a r a c t e r i z e s  a per tu rba t ion  is cur lw;  
the analogous p a r a m e t e r  in the case  of one-  or two-dimens ional  per tu rba t ions  t ravel ing through a turbulent  
s t r e a m  around a f lat  plate is  the der iva t ive  of the mean  veloci ty  ~Wx/0Z , which will be denoted here  by w. 

The mean  equation of a turbulent  fluid flowing around a plate in the half -plane xy can be put in the 
wel l -known fo rm:  

a---~ ax ~ az \ ax 2 § az 2 ] ax az ' 

where  Wtx and Wtz are  the longitudinal and the  t r a n s v e r s e  component  of the pulsat ion velocity.  

Le t  us d i f ferent ia te  this equation with r e s p e c t  to z: as a resul t ,  we obtain the following equation 

a~ § " ax w~ a-~- + az \ ax az / 

\ ax ~ + ~ - f  ] + ~ ax az " 

where  the fourth t e r m  on the lef t -hand side is equal to zero,  according to the mean  equation of continuity. 

If the plate is infinitely la rge  and the flow around it is Steady, then the longitudinal component  of the 
mean  ve loc i ty  w x is  a function of only dis tance z f r o m  the plate,  i .e . ,  w x = Wx(Z) and the t r a n s v e r s e  c o m -  
ponent w z is  equal to zero.  Consequently,  we have for  a s teady flow of a turbulent fluid around an infinitely 
l a rge  plate the following equation in w: 

ao~ a [ oo) o ] 

O'r az Oz c)z 

where  vtw = v t (~Wx/3z)denotes  the quantity WtxWtz and vt is the turbulent  v i scos i ty .  
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The t u r b u l e n t  v i s c o s i t y  v t v a r i e s  wi th  the  d i s t a n c e  f r o m  the  p l a t e ,  i . e . ,  i s  a func t ion  of z. In a v e r y  
r o u g h  a p p r o x i m a t i o n ,  v t m a y  be  c o n s i d e r e d  c o n s t a n t  and m u c h  l a r g e r  than  v. The  l a t t e r  a s s u m p t i o n  i s  va l id  
when  z > 6s;  as  to the f i r s t  p a r t  of the  a s s u m p t i o n ,  i t  i s  v a l i d  fo r  r a t h e r  l a r g e  v a l u e s  of z, i . e . ,  when t u r -  
bu l en t  p u l s a t i o n s  f a r  f r o m  the p la te  a r e  c o n s i d e r e d .  T h i s  a p p r o x i m a t i o n  m a y  s e r v e  on ly  as  the f i r s t  s t e p  in  
the a n a l y s i s ,  l a t e r  on i t  wi l l  have  to be r e p l a c e d  by  a m o r e  p r e c i s e  one.  

Suppose  tha t  a m o m e n t a r y  f low p e r t u r b a t i o n ,  i . e . ,  a t w o - d i m e n s i o n a l  p u l s a t i o n  has  b e e n  g e n e r a t e d  
a t  the p la te  s u r f a c e  (or n e a r  i t) .  Th i s  p u l s a t i o n  wi l l  t r a v e l  a c c o r d i n g  to the  a s s u m p t i o n  of a cons t an t  v t so  
tha t  the equa t ion  fo r  co b e c o m e s  

&o a2co 
- -  = v ,  - -  ( 2 )  

& az ~ 

Thi s  equa t ion  i s  i d e n t i c a l  wi th  the  equa t ion  of d i f fus ion .  T h e r e f o r e ,  f low p e r t u r b a t i o n  in  the f lu id  and 
thus a l so  t u r b u l e n t  v e l o c i t y  p e r t u r b a t i o n  t r a v e l  by  d i f fus ion .  

The  s o l u t i o n  to the equa t ion  of d i f fus ion  wi th  a c o n s t a n t  d i f f u s i v i t y  (which happens  to be vt) , for  the 
c a s e  of a u n i f o r m  s u r f a c e  d e n s i t y  of d i f fu s ing  s u b s t a n c e  (or of m o m e n t u m  in  our  s tudy)  at the p lane  z = 0 
( m o r e  p r e c i s e l y ,  the v o l u m e  d e n s i t y  in  the  a d j a c e n t  to i t  l a y e r  of t h i c k n e s s  A) at  the i n i t i a l  i n s t a n t  of t i m e ,  
i s  

( (o = _ exp - -  �9 (3) 
i T 

The quan t i t y  co i s  s u b j e c t  to the c o n s t r a i n t s :  1) w = ~  at z = 0  and r = 0 ; 2 )  co = 0  a t z  = r 1 6 2  r =r162 

E x p r e s s i o n  (3) d e s c r i b e s  the d i s t r i b u t i o n  of co in  s p a c e  and in  t i m e  a f t e r  a m o m e n t a r y  p u l s a t i o n  has  
a p p e a r e d  at  z = 0 and r = 0; the e x p r e s s i o n  i s  va l id  fo r  l a r g e  v a l u e s  of z. 

We now i n t r o d u c e  the m e a n  d i s t a n c e  I de f ined  by  the r e l a t i o n  

I = ~ o)zdz o)dz (4) 
0 0 

This  e x p r e s s i o n  i s  ana logous  to the one used  in  the k i n e t i c  t h e o r y  of g a s e s  for  de f in ing  the m e a n  f r e e  
pa th  length  of m o l e c u l e s .  

CO 

Since  co = aWx/aX, the i n t e g r a l  t" wdz r e p r e s e n t s  ( a c c u r a t e l y ,  e x c e p t  fo r  the c o n s t a n t  f a c t o r  equa l  to 
r  

0 

the  f lu id  dens i ty )  a m o m e n t u m  a s s o c i a t e d  with  the  v e l o c i t y  pu l sa t ion .  A c c o r d i n g l y ,  l i s  the e f f e c t i v e  d i s t a n c e  
t h rough  which  a p u l s a t i n g  m o m e n t u m  t r a v e l s  t h rough  the f luid.  In o t h e r  w o r d s ,  l r e p r e s e n t s  the e f f ec t i ve  
d i s t a n c e  th rough  which  a p u l s a t i o n  i s  t r a n s m i t t e d  on the a v e r a g e :  i t  i s  the mix ing  length  of v e l o c i t y  p u l s a -  
t ions .  

I n s e r t i n g  the e a r l i e r  va lue  of co in to  the e x p r e s s i o n  for  l ,  we have 

l ] / f  4 
Y t T  . (s) 

The  quan t i t y  w, when t r e a t e d  as  a func t ion  of r a t  a g iven  z, p a s s e s  t h rough  a m a x i m u m  which  i s  d e t e r -  
m i n e d  by  the cond i t i on  (&0/0r )z  = 0 and hence  

~ t  T ~ Z 2. 

Thi s  equa t ion  d e f i n e s  the p o s i t i o n  of m a x i m u m  w; a c c o r d i n g  to i t ,  the m a x i m u m  p e r t u r b a t i o n  at  the t ime  
r o c c u r s  at  the  d i s t a n c e  z = ~/2vt r  f r o m  the p l a t e  (where  z >> 5s). 

Wi th  th is  z in  e x p r e s s i o n  (5), the fo l lowing  wi l t  be the va lue  of t a t  the t i m e  r or ,  which  i s  equ iva l en t ,  
a t  the d i s t a n c e  z f r o m  the p la te :  

I = z = 0.8z. 

The  m a g n i t u d e  of the n u m e r i c a l  c o e f f i c i e n t  in  th is  equa t ion  m a y  not be c o n s i d e r e d  a c c u r a t e ,  s i n c e  the 
o r i g i n a l  a s s u m p t i o n  of a c o n s t a n t  v t has  been  b a s e d  on a r o u g h  a p p r o x i m a t i o n ;  b e s i d e s ,  s o l u t i o n  (3) does  not  
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imply that ./c0dz = 0 at �9 = :o. In order  to refine the result ,  we approximate  v t = a z  on the basis  of the 
0 

established proport ionali ty between l and z, where v~ is a constant. 

In this case the equation for  co will become 

0co a 2 
- -  ~ - -  ( z c 0 ) .  

aT OP 
(6) 

The solution to this equation for z >> 5 s is 

---c~ exp ( - -  ~-~--/ ' 
(0 ~ T 2 

as can be easi ly verified by appropriate  substitutions. Insert ing the value of w into the express ion for l, 
we obtain 

(7) 

t = cr (8) 

On the other hand, f rom the condition (&0/~-) z = 0 we have 

2cZ% ~--- Z.  (9) 

With this o~'r = z / 2 ,  express ion  (8) yields 

l ----- 0.5 z. (10) 

It also follows f rom (9) that the velocity at which the maximum co moves is 0z/St  = 2c~, i.e., has a 
constant value; this has to do with the fact  that veloci ty pulsations bring about changes in the velocity field 
of a moving fluid. 

Owing to the constant velocity of the maximum co and to the finite value of l, which defines the ef-  
fective path length of a momentum associated with pulsations, it is feasible to t reat  a turbulent pulsation 
as an isolated mass  or part icle of fluid (in the macroscop ic  sense) moving at the velocity w* = 2a in a r an -  
dom direct ion and passing within its life span (i.e., f rom the instant it appears to the instant it vanishes) 
through the distance l. This is the basis for the analogy between a turbulent flow and the motion of gas 
molecules.  

Thus, according to Eqs. (10) and (9), the mixing length of a turbulent pulsation is a lmost  one half the 
distance f rom the solid wall, while the mixing veloci ty of a turbulent pulsation is constant. 

Exper iments  yield for I~  z = f l w  approximately 0.4 [I], which agrees  closely enough with formula  (10). 
The numerical  agreement  could possibly be improved still by the use of a higher degree approximation 
(which, f i r s t  of all, should involve a replacement  of the plane pulsation by a spherical  one). 

It is to be noted that fo rmula  (10), which has been derived analytically, leads to a l inear relat ion 
between I and z, as once suggested by Prandtl .  The proport ionali ty factor  fiw between l and z in the well-  
known Prandtl  fo rmula  is of fundamental significance in the theory of turbulence, but remains  indeterminate 
and has to be calculated f rom test  data. On the other hand, Eq. (10) yields the acceptable value flw = 0.5, 
which has been established theoret ical ly by an analysis  of pulsations diffusing through a turbulent s t r eam 
of fluid and which represen t s  the kinematic charac te r i s t i c s  of turbulent pulsations. Equation (10) offers 
an interpreta t ion of other peculiari t ies  of a turbulent flow as well,  including the proport ionali ty between vt 
and the distance z f rom the wall. This proport ional i ty  is based, f i r s t  of all, on the proport ionali ty between 
I and z and, secondly, on the constancy of the pulsation veloci ty at var ious points along the s t ream;  by the 
way, the relat ion v t = a z  can also be ar r ived at by expanding v t into a power se r ies  in z and disregarding 
all t e rms  except the f i r s t  one. 

The logari thmic distr ibution of mean velocity is explained analogously. Inasmuch as the analysis of 
a single turbulent velocity pulsation shows that the mixing velocity of pulsations is constant and equal to w*, 
while pulsations are continuously generated in the s t ream,  there is a pulsation velocity of the same magni-  
tude at eve ry  point in the s t r eam at any instant of time (when the turbulence is anisotropic,  the value of the 
pulsation parameter  depends on the direction). Since by definition 

~ t  " ~ - -  ~ t x  w i z '  
Oz 
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and a c c o r d i n g  to the  p r e c e d i n g  d i s c u s s i o n ,  v t = a z  (a = W t z / 2  = w * / 2 ) ,  hence ,  l e t t ing  Wtx = - W t z  , we have 

F r o m  th i s  fo l lows  

W*Z Owx =~ .2 .  

2 & 

OW x 2~* 

i . e . ,  the v e l o c i t y  of the  f luid v a r i e s  l o g a r i t h m i c a l l y  wi th  the d i s t a n c e  z f r o m  the p l a t e .  

It i s  to be noted tha t  the e x p r e s s i o n  h e r e  a l r e a d y  con ta ins  the n u m e r i c a l  va lue  of the cons t an t  flw (we 
r e c a l l  tha t  flw i s  the n u m e r i c a l  f a c t o r  in  the d e n o m i n a t o r  of the r i g h t - h a n d  s ide  of the e x p r e s s i o n  fo r  aw x 
/ 0 z ) ,  wh ich  happens  to be  equa l  to 1 / 2 .  Thus ,  in  o r d e r  to d e t e r m i n e  the n u m e r i c a l  va lue  of ~w, i t  i s  not 
a b s o l u t e l y  n e c e s s a r y  to s t a r t  out  f r o m  e a r l i e r  d e r i v e d  i n t e g r a l  f o r m u l a  fo r  1. 

If we use  the e a r l i e r  found v a l u e  l = z / 2 ,  then the e x p r e s s i o n  for  aWx/aZ m a y  be w r i t t e n  as  

f r o m  which  fo l lows  

& l 

wt~-- Ow~ t, (12) 
Oz 

b y  v i r t u e  of w* = Wtz. F i n a l l y ,  r e p l a c i n g  a by W t z / 2  and z by 2 l  in  vt = c~z, we have 

v~ = wtd- (I3) 

E x p r e s s i o n s  (12) and (13) fo r  Wtz and . t a g r e e  wi th  the f u n d a m e n t a l  s e m i e m p i r i c a i  r e l a t i o n s  in  the t h e o r y  
of t u r b u l e n c e .  

We wi l l  now c a l c u l a t e  the  c o n s t a n t  a = W * 6 s / u .  A c c o r d i n g  to m o d e r n  c o n c e p t s ,  the p r e d o m i n a n c e  of 
m o l e c u l a r  v i s c o s i t y  c a u s e s  the  v e l o c i t y  d i s t r i b u t i o n  in  a v i s c o u s  s u b l a y e r  to be the s a m e  as  in  a l a m i n a r  
flow; on the o t h e r  hand,  in  a v i s c o u s  s u b l a y e r  t h e r e  o c c u r  t u r b u l e n t  v e l o c i t y  p u l s a t i o n s  which  have p e n e -  
t r a t e d  into  i t  f r o m  the m a i n  s t r e a m .  

T r a n s v e r s e  t u r b u l e n t  p u l s a t i o n s  which  have  p e n e t r a t e d  into  the v i s c o u s  s u b l a y e r  f r o m  the m a i n  
s t r e a m  should  not  d i f f e r  k i n e m a t i c a l l y  f r o m  p e r t u r b a t i o n s  t r a v e l i n g  th rough  the v i s c o u s  s u b l a y e r ,  b e c a u s e  
the  v i s c o u s  s u b l a y e r  would o t h e r w i s e  not  be s t a b l e .  In o t h e r  w o r d s ,  the  k i n e m a t i c  c h a r a c t e r i s t i c s  of t r a n s -  
v e r s e  t u r b u l e n t  p u l s a t i o n s  in  the v i s c o u s  s u b l a y e r  m u s t  be the s a m e  as  those  of v i s c o u s  f low p e r t u r b a t i o n s  
t r a v e l i n g  h e r e :  ~heir  f r e q u e n c i e s  at  a g i v e n  po in t  in the  s u b l a y e r  m u s t  be the  s a m e  and the c h a r a c t e r i s t i c  
t i m e ,  i . e . ,  the t i m e  n e c e s s a r y  to move  a c r o s s  the s t r e a m  by a d i s t a n c e  equa l  to the s u b l a y e r  t h i c k n e s s  
m u s t  a l so  be the  s a m e .  

Owing to the p r e d o m i n a n c e  of m o l e c u l a r  v i s c o s i t y ,  the c h a r a c t e r i s t i c  t i m e  for  a v i s c o u s  s u b l a y e r  
i s  the s a m e  as  fo r  a l a m i n a r  f low.  

In the case of a laminar stream of fluid around aa infinitely large plate the front edge of which lies on 
the oy-axis, the equation of a perturbation wave is 

0"~ r- :v~ Ox Oz Oz ~ 

If the p l a t e  i s  t r e a t e d  as  a con t inuous  s o u r c e  of f i n i t e l y  l a r g e  p e r t u r b a t i o n s  (0co/3~ = 0 for  a c o n s t a n t l y  
a c t i v e  s o u r c e )  and i f  the  v e l o c i t y  d i s t r i b u t i o n  i s  t a k e n  a c c o r d i n g  to Bfas iu s :  

/ - -  
1.33 w0z | w 0 + . . , ;  ~az = 1.33 w0 z2 + ..... 

w ~ - -  4 , - -  v x  1---~ - - - ~  

then  the s o l u t i o n  to the e q u a t i o n  fo r  w wi th  the b o u n d a r y  cond i t ions  ~ = cowall(x) at  z =. 0 and co = 0 at  z _> 6 
will be 

t' ) 1 exp ( - -  0.22 g2) d~ (14) a) = O}wal 1 1 1.5 , 
0 
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f r o m  where 

= 3 1 /  vx (1S) 5 
WO 

It is in terest ing to note that this formula  could have been derived direct ly  f rom the express ion for 
Wx, if it were  taken into considerat ion that velocity w x must  be equal to w0 at z = 0. 

Since the rat io x / w  0 rep resen t s  the sought time z* (during this time a perturbation appearing at the 
edge of the plate is car r ied  by the s t r eam horizontally,  i.e., along the plate through the distance x and 
penetrates  normal ly  into the plate, i.e.,  ac ross  the s t r eam through the distance z = 6), hence the cha rac -  
te r i s t ic  time of flow perturbations in a viscous sublayer  is 

Z z 
"~* = (16) 

9~ 

A t r ansve r se  turbulent pulsation with the veloci ty w* would also requi re  the time 5s/W* to move 
through the distance 6, if it moved as in the main s t ream,  while a viscous perturbation requires  the t ime 
52s/9v. Equating both t imes,  we have 

~ - ~ (17) 
w* -- 9v ' 

f rom which a = 9. According to tests ,  a = 11.5 [2]. 

For  z = 6s, Eq. (2) of viscous perturbations (v t replaced by v) and Eq. (6) of turbulent pulsations must  
both yield the same value for co; equating the exponents in (3) and (7), we obtain 62/4v  = 25s/W*. This 
indicates that the frequencies of perturbations and pulsations in this analysis are the same,  which also 
yields a lmost  the same value for a. 

In conclusion, we consider  the mixing length of turbulent tempera ture  pulsations. In a plane-paral ie l  
turbulent s t r eam at the same tempera ture  T O everywhere  (this corresponds  to the idealized case of zero 
t he rma l  flux) and flowing around an infinitely large plate let there appear at the plate surface a m o m e n t a r y  
two-dimensional  tempera ture  pulsation which then t ravels  ac ross  the s t ream.  

In the general  equation of heat t r ansmiss ion  in an incompress ib le  fluid 

Ox'" + ~ a ~ - ~ x -  +~a~  c)----~ = 2cp ~. Ox s + Ox i ] " -bd iv •  a 

we replace the actual t empera ture  T a by the sum of the mean and the pulsating temperature  T + T t and, 
with the aid of the continuity equation, we derive the following mean equation for the tempera ture  d is t r ibu-  
tion in a turbulently flowing fluid (we d i s regard  here  the t e rms  containing v and ~): 

0 #  0 
- (wt~TO, (18) 

O~ Oz 

w h e r e 4  = T - T  o . 

In a turbulent s t r eam the heat t ravels  via the ground and via the turbulent velocity pulsations which 
entrap the entire s t ream.  Since a fast  t raveling tempera ture  perturbation does not produce a change in the 
veloci ty  field, or at least does not affect it noticeably, hence the turbulent thermal  diffusivity ~ t  = (wtzTt) 
/ (OT/0z) may be assumed equal to flz (~ = const), as in the case of turbulent v iscos i ty  v t. Then the equa- 
tion for 4 becomes 

08 0 ( 08 ] 
0 - - 7  = o-W- " 

The solution to this equation under conditions analogous to (6) (with ~ ~dz ,~ 0 at r = ~) i s  
0 

= cons t exp (-- z/[tx). (19) 
T 

With the aid of this expression,  we find f rom the integral  express ion for l that 

lr = .I ~zdz a~dz = ~ .  
o 
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On the other hand, f r o m  the condition of m a x i m u m  ~, i .e. ,  f r o m  the equation (hS/0~-)z = 0 follows 

I Z ~- = 0  
T 2 ~T 3 

or fl~ = z. Inser t ing  this value of 3~" into the exp re s s ion  for  l T will f inally yield 

that 

Iv = z. (20) 

A compar i son  between expres s ions  (10) and (20) for  l and IT,  r e spec t ive ly ,  shows that l T = 2/ ,  i .e. ,  

~-L-r = 2. (21) 
~w 

Consequently,  the mixing length of turbulent  t e m p e r a t u r e  pulsations is g r e a t e r  than that of turbulent 
ve loc i ty  pulsat ions.  

This  value of the r a t io  flT/flw agrees  well  enough with the empi r i ca l  va lues  1.45-2.0 [3]. 

It ought to be noted that the d i f ference  between the mixing length of ve loci ty  and t e m p e r a t u r e  pulsa-  
tions is not surpr i s ing .  It  is evident a l ready f r o m  the kinetic theory  of gases  that the f r ee  path length may  
be di f ferent  in t e r m s  of in terna l  f r ic t ion  and in t e r m s  of the rma l  conductivity. In a l aminar  s t r e a m  the coef -  
f ic ient  of downs t ream heat  t r an s f e r  is 2.5 t imes  g r e a t e r  than the coeff icient  of momen tum t r ans f e r  to the 
s t r e a m  [4]. It is  also unders tandable  why the turbulent t he rma l  conductivity exceeds  the turbulent  v i scos i ty ,  
which, in the final analys is ,  is a t t r ibutable  to the fact  that the d i f ferent ia l  equations of turbulent ve loci ty  
and of turbulent  t e m p e r a t u r e  pulsat ion are  not identical .  

1 ,  

2. 
3. 

4. 
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