CHARACTERISTIC CONSTANTS OF TURBULENCE

I. I. Novikov UDC 532.517.4

The mixing lengths of turbulent velocity and temperature pulsations are calculated theo-
retically for a steady flow around an infinitely large plate, also the thickness of the
viscous sublayer. The values of these parameters based on analytical formulas are found
to be in close agreement with empirical values.

The main characteristics of turbulent flow, including the values of its constants in both the velocity
and the temperature distribution equations (namely 8y, and 8T in the equations for the mixing lengths of
turbulent velocity and temperature pulsations, and the parameter ¢ = w*35/ v describing the thickness g
of the viscous sublayer), are related to the diffusion mechanism of propagating turbulent pulsations and,
therefore, should be defined on the basis of this mechanism. Usually By, @, and 8T are considered to
be empirical constants, In this article we will try to calculate them theoretically.

Turbulent pulsations may be treated as flow perturbations traveling along a turbulent stream of fluid.
Flow perturbations occur in any stream; the magnitude of a perturbation is characterized by the resulting
change in the velocity at a given point in the fluid. In the well-known problem concerning the diffusion of
a single straight vortex through a laminar stream, the quantity which characterizes a perturbation is curlw;
the analogous parameter in the case of one- or two-dimensional perturbations traveling through a turbulent
stream around a flat plate is the derivative of the mean velocity dwy/9z, which will be denoted here by w.

The mean equation of a turbulent fluid flowing around a plate in the half-plane xy can be put in the
well-known form:
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where wtx and wiz are the longitudinal and the transverse component of the pulsation velocity.
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Let us differentiate this equation with respect to z: as a result, we obtain the following equation
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where the fourth term on the left-hand side is equal to zero, according to the mean equation of continuity.

If the plate is infinitely large and the flow around it is steady, then the longitudinal component of the
mean velocity w, is a function of only distance z from the plate, i.e., w, = wx(z) and the transverse com-
ponent w, is equal to zero. Consequently, we have for a steady flow of a turbulent fluid around an infinitely
large plate the following equation in w:
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where viw = v (dwy/ 02). denotes the quantity WixWiz and v is the turbulent viscosity.
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The turbulent viscosity vy varies with the distance from the plate, i.e., is a function of z. In avery
rough approximation, v, may be considered constant and much larger than y, The latter assumption is valid
when z = 6g; as to the first part of the assumption, it is valid for rather large values of z, i.e., when tur-
bulent pulsations far from the plate are considered. This approximation may serve only as the first step in
the analysis, later on it will have to be replaced by a more precise one,

Suppose that 2 momentary flow perturbation, i.e., a two-dimensional pulsation has been generated
at the plate surface (or near it). This pulsation will travel according to the assumption of a constant v; so
that the equation for w becomes

0w o
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This equation is identical with the equation of diffusion. Therefore, flow perturbation in the fluid and
thus also turbulent velocity perturbation travel by diffusion.

The solution to the equation of diffusion with a constant diffusivity (which happens to be v}, for the
case of a uniform surface density of diffusing substance (or of momentum in our study) at the plane z =0
(more precisely, the volume density in the adjacent to it layer of thickness A) at the initial instant of time,
is
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The quantity w is subject to the constraints: 1) w=watz=0and r=0;2) w =0 atz = or 7 = =,

Expression (3) describes the distribution of w in space and in time after a momentary pulsation has
appeared at z = 0 and 7 = 0; the expression is valid for large values of z.

We now introduce the mean distance [ defined by the relation
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This expression is analogous to the one used in the kinetic theory of gases for defining the mean free
path length of molecules,
Since w = dwy/0x, the integral S wdz represents (accurately, except for the constant factor equal to
0
the fluid density) 2 momentum associated with the velocity pulsation. Accordingly, ! is the effective distance
through which a pulsating momentum travels through the fluid. In other words, I represents the effective

distance through which a pulsation is transmitted on the average: it is the mixing length of velocity pulsa-
tions,

Inserting the earlier value of w into the expression for I, we have
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The quantity w, when treated as a function of 7 at a given z, passes through a maximum which is deter-
mined by the condition (8w/87), = 0 and hence

v, 1= 2%

This equation defines the position of maximum w; according to it, the maximum perturbation at the time
T occurs at the distance z =V 2y¢7 from the plate (where z >» dg).

With this z in expression (5), the following will be the value of I at the time r or, which is equivalent,
at the distance z from the plate:
[ = ‘/—?—— z=0.82.
i

The magnitude of the numerical coefficient in this equation may not be considered accurate, since the
original assumption of a constant v, has been based on a rough approximation; besides, solution (3) does not
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imply that \ wdz =0 at 7 = «, In order to refine the result, we approximate v; = oz on the basis of the
0

established proportionality between! and z, where « is a constant,

In this case the equation for w will become
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The solution to this equation for z > dg4 is
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as can be easily verified by appropriate substitutions. Inserting the value of w into the expression for I,
we obtain

[ = ax. 8)
On the other hand, from the condition (8w/87), = 0 we have
 Sar =z 9)

With this a7 = z/2, expression (8) yields
=052 (10)

It also follows from (9) that the velocity at which the maximum w moves is 9z/98r = 2q, i.e., has a
constant vaiue; this has to do with the fact that velocity pulsations bring about changes in the velocity field
of a moving fluid.

Owing to the constant velocity of the maximum w and to the finite value of I, which defines the ef-
fective path length of 2 momentum associated with pulsations, it is feasible to treat a turbulent pulsation
as an isolated mass or particle of fluid (in the macroscopic sense) moving at the velocity w* = 2¢ in a ran-
dom direction and passing within its life span (i.e., from the instant it appears to the instant it vanishes)
through the distance /. This is the basis for the analogy between a turbulent flow and the motion of gas
molecules.

Thus, according to Eqs. (10) and (9), the mixing length of a turbulent pulsation is almost one half the
distance from the solid wall, while the mixing velocity of a turbulent pulsation is constant.

Experiments yield for I/ z = 8y approximately 0.4 [1], which agrees closely enough with formula (10).
The numerical agreement could possibly be improved still by the use of a higher degree approximation
(which, first of all, should involve a replacement of the plane pulsation by a spherical one).

It is to be noted that formula (10), which has been derived analytically, leads to a linear relation
between! and z, as once suggested by Prandtl. The proportionality factor 8y, betweenl and z in the well-
known Prandtl formula is of fundamental significance in the theory of turbulence, but remains indeterminate
and has to be calculated from test data. On the other hand, Eq. (10) yields the acceptable value By = 0.5,
which has been established theoretically by an analysis of pulsations diffusing through a turbulent stream
of fluid and which represents the kinematic characteristics of turbulent pulsations. Equation (10) offers
an interpretation of other peculiarities of a turbulent flow as well, including the proportionality between v¢
and the distance z from the wall, This proportionality is based, first of all, on the proportionality between
I and z and, secondly, on the constancy of the pulsation velocity at various points along the stream; by the
way, the relation vy = @z can also be arrived at by expanding v¢ into a power series in z and disregarding
all terms except the first one.

The logarithmic distribution of mean velocity is explained analogously. Inasmuch as the analysis of
a single turbulent velocity pulsation shows that the mixing velocity of pulsations is constant and equal to w¥,
while pulsations are continuously generated in the stream, there is a pulsation velocity of the same magni-
tude at every point in the stream at any instant of time (when the turbulence is anisotropic, the value of the
pulsation parameter depends on the direction). Since by definition
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and according to the preceding discussion, vy = az (@ = wg,/2 = w*/2), hence, letting wiy = —wi,, we have

w¥z ) ow, o
2 az
From this follows
Ow, _ _2w*
oz z (11)

i.e., the velocity of the fluid varies logarithmically with the distance z from the plate,

It is to be noted that the expression here aiready contains the numerical value of the constant g, (we
recall that 8y, is the numerical factor in the denominator of the right-hand side of the expression for dwy
/8z), which happens to be equal to 1/2. Thus, in order to determine the numerical value of Sy, it is not
absolutely necessary to start out from earlier derived integral formula for /.

If we use the earlier found value! = z/2, then the expression for dwy/0z may be written as

0w, w*
e 1
from which follows
Wy, == g, I (12)
~é?z

by virtue of w* = wy,. Finally, replacing o by wy,/2 and z by 27 in vy = ¢z, we have
v, = wgl. (13)

Expressions (12) and (13) for wtz and v¢ agree with the fundamental semiempirical relations in the theory
of turbulence.

We will now calculate the constant ¢ = w*dg/v. According to modern concepts, the predominance of
molecular viscosity causes the velocity distribution in a viscous sublayer to be the same as in a laminar
flow; on the other hand, in a viscous sublayer there occur turbulent velocity pulsations which have pene-
trated into it from the main stream.

Transverse turbulent pulsations which have penetrated into the viscous sublayer from the main
stream should not differ kinematically from perturbations traveling through the viscous sublayer, because
the viscous sublayer would otherwise not be stable. In other words, the kinematic characteristics of trans—
verse turbulent pulsations in the viscous sublayer must be the same as those of viscous flow perturbations
traveling here: their frequencies at a given point in the sublayer must be the same and the characteristic
time, i.e., the time necessary to move across the stream by a distance equal to the sublayer thickness
must also be the same.

Owing to the predominance of molecular viscosity, the characteristic time for a viscous sublayer
is the same as for a laminar flow,

In the case of a laminar stream of fluid around an infinitely large plate the front edge of which lies on
the oy-axis, the equation of a perturbation wave is
< 0o 17,0} do %
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If the plate is treated as a continuous source of finitely large perturbations (8w/ 1 = 0 for a constantly
active source) and if the velocity distribution is taken according to Blasius:

1.33 w, 1.33 w2t w,
w, = 1 wozl/- bt W, = 5 ; l/ w(; EE
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then the solution to the equation for w with the boundary conditions « = wwall® atz =0and w =0atz =9

will be
SV
1

o= m‘wall(\l T S exp(—0.228%) dﬁ) (14)
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from where

vX .
§=3l/ = (s)

It is interesting to note that this formula could have been derived directly from the expression for
Wy, if it were taken into consideration that velocity wy must be equal to w, at z = 0.

Since the ratio x/w; represents the sought time »* (during this time a perturbation appearing at the
edge of the plate is carried by the stream horizontally, i.e., along the plate through the distance x and
penetrates normally into the plate, i.e., across the stream through the distance z = §), hence the charac-
teristic time of flow perturbations in a viscous sublayer is

22
™= . 16
» (16)

A transverse turbulent pulsation with the velocity w* would also require the time 65/ w* to move
through the distance &, if it moved as in the main stream, while a viscous perturbation requires the time
6%/ 9v. Equating both times, we have

8 _ & (17)
w* 9v .

from which ¢ = 9. According to tests, a =11.5 [2].

For z = g, Eq. (2) of viscous perturbations (v; replaced by v) and Eq. (6) of turbulent pulsations must
both yield the same value for w; equating the exponents in (3) and (7), we obtain 628/41/ =205/ w*. This
indicates that the frequencies of perturbations and pulsations in this analysis are the same, which also
yields almost the same value for a.

In conclusion, we consider the mixing length of turbulent temperature pulsations. In a plane-parallel
turbulent stream at the same temperature T, everywhere (this corresponds to the idealized case of zero
‘thermal flux) and flowing around an infinitely large plate let there appear at the plate surface a momentary-
two-dimensional temperature pulsation which then travels across the stream.

In the general equation of heat transmission in an incompressible fluid

o e TR T
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we replace the actual temperature Tg4 by the sum of the mean and the pulsating temperature T + Ty and,
with the aid of the continuity equation, we derive the following mean equation for the temperature distribu-

tion in a turbulently flowing fluid (we disregard here the terms containing v and «):
09 0
o % (w,.Ty) | (18)

where 4 =T — T,.

In a turbulent stream the heat travels via the ground and via the turbulent velocity pulsations which
entrap the entire stream. Since a fast traveling temperature perturbation does not produce a change in the
velocity field, or at least does not affect it noticeably, hence the turbulent thermal diffusivity w¢ = (w,Ty)
/ (8T /8z) may be assumed equal to 8, (8 = const), as in the case of turbulent viscosity ;. Then the equa-~

tion for 4 becomes ‘
a9 a o8 )
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dt 0z 0z

The solution to this equation under conditions analogous to (6) (with. f ddz # 0 at T = «) is
N 0

& = OB exp (— 2/8v). (19)
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With the aid of this expression, we find from the integral expression for ! that

l=m\‘}d/mﬁd=.
T (522 OS z = Pt
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On the other hand, from the condition of maximum 4, i.e., from the equation (&/87), = 0 follows

1+z

2 B

=0

or 87 =z, Inserting this value of 87 into the expression for I will finally yield

=z, (20)
A comparison between expressions (10) and (20) for ! and I, respectively, shows that [t =21, i.e.,
that
Br o (21)
B

Consequently, the mixing length of turbulent temperature pulsations is greater than that of turbulent
velocity pulsations.

This value of the ratio 87/ By agrees well enough with the empirical values 1.45-2.0 [3].

It ought to be noted that the difference between the mixing length of velocity and temperature pulsa-
tions is not surprising. It is evident already from the kinetic theory of gases that the free path length may
be different in terms of internal friction and in terms of thermal conductivity. In a laminar stream the coef-
ficient of downstream heat transfer is 2.5 times greater than the coefficient of momentum transfer to the
stream [4]. It is also understandable why the turbulent thermal conductivity exceeds the turbulent viscosity,
which, in the final analysis, is attributable to the fact that the differential equations of turbulent velocity
and of turbulent temperature pulsation are not identical.
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